Shunt Regulator-Based Compensators

In the previous chapters, we have studied compensators that deliver an error voltage, $V_{e r r}(s)$, which controls either the duty ratio D (voltage mode control) or the peak current setpoint (peak-current mode control). Popularized by Power Integrations over the past 15 years, the TOPSwitch ${ }^{\circledR}$ is a high-voltage switcher implementing the shunt regulator. Rather than controlling the duty ratio by changing a voltage level on a pin, the company combined the $V_{c c}$ and the feedback pins together so that a single input could not only supply the control section but also drive the duty ratio excursion by monitoring the injected current: a three-pin integrated switcher was born. Even if the loop is controlled by a TL431 or a Zener diode, we dedicated a chapter to describe the compensator implementation given the peculiarity of the circuit. Figure 8.1 shows the representation of the shunt regulator as it can be found in a TOPSwitch device [1].

The circuit works like an active Zener diode featuring a dynamic resistor R_{d} of 15Ω. When there is almost no injected current in the feedback pin (FB), the delivered duty ratio is maximum (67 percent). On the contrary, when more than 6 mA are injected, the duty ratio drops to its minimum value or 1.8 percent. Varying the injected current depending on the input/output conditions is the adopted means to adjust the duty ratio. To improve the noise immunity and also to shape the compensator response, a $7-\mathrm{kHz}$ pole was included in the modulator path. We will need to account for its presence during the ac analysis. The curve depicting the modulator transfer function, D versus $I_{F B}$, appears in Figure 8.2.

Due to the information displayed on the curve, the small-signal gain of the whole modulator can be deduced. It is simply

$$
\begin{equation*}
S_{P W M}=\frac{\Delta D}{\Delta I_{F B}}=\frac{1.8-67}{6-2} \approx-16 \% / \mathrm{mA} \tag{8.1}
\end{equation*}
$$

However, in the models we use, the duty ratio value is usually expressed in volts: a $1-\mathrm{V}$ dc signal represents a 100 percent duty ratio. As current is primarily expressed in amperes rather than milliamperes, (8.1) needs to be reformulated to cope with our simulation models:

$$
\begin{equation*}
S_{P W M}=\frac{0.017-0.67}{6 m-2 m}=-163 \mathrm{~V} / \mathrm{A} \tag{8.2}
\end{equation*}
$$

Expressed in decibels, this slope becomes a gain of

$$
\begin{equation*}
G_{P W M}=20 \log _{10}(163) \approx 44 \mathrm{~dB} \tag{8.3}
\end{equation*}
$$

This specific arrangement requires a little bit more of analysis compared to a traditional voltage-mode feedback. However, experience shows that it does not prevent

